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Abstract Differences in the strength of species-

habitat relationships across scales provide insights

into the mechanisms that drive these relationships

and guidance for designing in situ monitoring

programs, conservation efforts and mechanistic stud-

ies. The scale of our observation can also impact the

strength of perceived relationships between animals

and habitat conditions. We examined the relationship

between geographic information system (GIS)-based

landscape data and Endangered Species Act-listed

anadromous Pacific salmon (Oncorhynchus spp.)

populations in three subbasins of the Columbia River

basin, USA. We characterized the landscape data and

ran our models at three spatial scales: local (stream

reach), intermediate (6th field hydrologic units

directly in contact with a given reach) and catchment

(entire drainage basin). We addressed three questions

about the effect of scale on relationships between

salmon and GIS representations of landscape condi-

tions: (1) at which scale does each predictor best

correlate with salmon redd density, (2) at which

scale is overall model fit maximized, and (3) how

does a mixed-scale model compare with single scale

models (mixed-scale meaning models that contain

variables characterized at different spatial scales)?

We developed mixed models to identify relationships

between redd density and candidate explanatory

variables at each of these spatial scales. Predictor

variables had the strongest relationships with redd

density when they were summarized over the

catchment scale. Meanwhile strong models could

be developed using landscape variables summarized

at only the local scale. Model performance did not

improve when we used suites of potential predictors

summarized over multiple scales. Relationships

between species abundance and land use or intrinsic

habitat suitability detected at one scale cannot

necessarily be extrapolated to other scales. There-

fore, habitat restoration efforts should take place in

the context of conditions found in the associated

watershed or landscape.
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Introduction

Organisms experience and interact with their envi-

ronment over a variety of scales. Physiological

processes operate at the cellular scale, foraging

activities occur over a larger spatial domain and the

factors governing the environment itself operate over

still larger scales. The importance of scale to ecology

is well documented in the literature (Wiens 1989;

Levin 1992; Rastetter et al. 2003; Urban 2005) and

the number of studies that have explored this

important ecological paradigm has increased dramat-

ically over the past few decades (Schneider 2001).

Scale and scaling

There are many definitions of the word ‘‘scale’’ in the

scientific literature (Jenerette and Wu 2000; Schnei-

der 2001), which is often a function of the discipline

in question. However, it behooves ecologists to

embrace multiple definitions of the term scale

(Jenerette and Wu 2000). Jenerette and Wu (2000)

described two ‘‘types’’ of scale: geographic and

operational [as originally described by Lam and

Quattrochi (1992)]. Geographic scale refers to the

extant, scope, or general size of a map or study area,

while operational scale refers to the geographic scale

at which a given process operates. Observational

scale is a third type of scale that adds yet another

level of complexity to how we view ecological

processes. The principles of scale are certainly not

limited to space. While we seek to quantify how

processes operating at various spatial scales affect the

ecology of organisms, we must be astutely aware of

how the scale of our observation affects our conclu-

sions about how organisms interact with their envi-

ronments (Wiley et al. 1997). Phenomena that we

observe at a given location are the result of multiple

factors, operating over a hierarchy of scales (Poff

1997). Finally, there is the concept of scaling,

whereby one tries to extrapolate information gathered

at a local scale to a larger area or for multiple species.

Scaling is essential to both ecologists and managers

alike in that ecologists seek to understand how

processes observed locally operate broadly, and

managers often make decisions that affect entire

ecosystems (Urban 2005). Therefore, understanding

the significance of scale, both from the perspective of

our observation window, and how an organism

experiences its environment is critical if we seek to

identify spatial patterns of communities. Unfortu-

nately, it could be argued that ecologists cannot

adequately predict or even identify factors operating

across various scales that drive observed spatial

distributions of flora and fauna (see Resetarits 2005).

This difficulty arises, in part, from the fact that we

often know little about an organism’s perception of

scale when they make habitat selection decisions

(Resetarits 2005). It is also critical for the manage-

ment of endangered organisms, especially those with

migratory behavior, in that local solutions must be

selected within the context of conditions in the

surrounding landscape. Therefore, there is utility in

identifying scaling relationships beyond academic

endeavors. Resource managers are confronted with

trying to make decisions that affect a large geo-

graphic area, but are forced to do so using informa-

tion that was gathered over a small area.

Riverscapes and hierarchy

Riverine ecosystems present unique challenges when

trying to study the influence of scale. Complex stream

networks embedded within a three-dimensional

matrix of landscapes presents a challenge to ecolo-

gists trying to understand how scaling affects the

ecology of these systems. Much attention has been

paid to the hierarchical arrangement of temporally

dynamic riverine ecosystems, with their complex

catchments nested within larger landscapes, all

containing rich biota (Frissell et al. 1986). As such,

riverine ecosystems are often referred to as ‘river-

scapes’ (Ward 1998; Fausch et al. 2002; Wiens 2002;

Allan 2004), the riverine equivalent to terrestrial

landscapes. Hierarchy theory states that what we

observe within our sampling point quadrat is really

the product of many other factors operating over

successive larger extents (Allen and Starr 1982; Poff

1997). Climate interacts with geology and topogra-

phy to form river basin and river network features,

which in turn drives geomorphological processes.

These processes control habitat structure and distur-

bance regimes, which ultimately control the content

and structure of aquatic and riparian habitats we see

on the ground (Montgomery 1999). However, com-

ponents found lower in this hierarchy or continuum

can influence the higher order drivers. For example,

riparian conditions can drive recruitment of coarse
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organic matter, including woody and herbaceous

debris, which affects sediment aggradation/degrada-

tion patterns from bank erosion or upstream pro-

cesses, e.g., landslides (Frissell et al. 1986; Martin

and Benda 2001). These local shifts in sedimentation

patterns can affect geomorphology, resulting in

feedback between these two components in the

hierarchy. Further, interactions throughout the afore-

mentioned hierarchy are sensitive to anthropogenic

influences (e.g., land use patterns) that may occur

locally but affect large areas (Montgomery 1999).

Successful models have incorporated this hierarchical

framework by including variables operating at multi-

ple scales (Olden et al. 2006). However, attempts to

extrapolate from field studies on species-specific

habitat preferences to species distributions across

regions have been problematic (Fausch et al. 2002;

Wiens et al. 2002). The difficulty is likely related to

the fact that local habitat conditions upon which

aquatic species depend are, in turn, controlled by the

patterns of land use, land cover, climate and geology

that operate over broad spatial extents (Frissell et al.

1986; Imhof et al. 1996; Richards et al. 1996; Davies

et al. 2000). Even relationships between landscape

characteristics of interest may vary with the scale of

observation. For example, a particular geology type

may be highly correlated with agriculture in the

riparian area but barely correlated with agriculture

over the entire catchment. Analyses across multiple

scales are therefore essential for untangling relation-

ships between the river and its corresponding

landscape.

Studies examining a wide variety of aquatic

species at multiple life-stages have noted that rela-

tionships between habitat and abundance can depend

on the extent over which the habitat is measured

(Morley and Karr 2002; Snyder et al. 2003; Wang

et al. 2003; Torgersen and Close 2004; Boys and

Thoms 2006; Moerke and Lamberti 2006; Johnson

et al. 2007). A series of three analyses conducted in

the Pacific Northwest used coarse-grained geographic

information system (GIS) representations of land-

scape conditions to predict Pacific salmon (Oncorhyn-

chus spp.) distributions over whole watersheds (Pess

et al. 2002; Feist et al. 2003; Steel et al. 2004). Among

these three studies, only Feist et al. (2003) investi-

gated the importance of scale in defining the potential

habitat predictors of salmon distribution. In this paper,

we expand on the work of Feist et al. (2003) by

exploring the importance of scale in multiple subba-

sins and in more than one species. We also employ

more rigorous statistical methods for testing our

hypotheses. We use a similar methodology (to the

aforementioned papers) to analyze relationships

between habitat condition, quantified at three spatial

scales, and the population performance of Pacific

salmon over time. Doing so provides insights into the

scale-specific relationships between habitat condition

and the habitat associations of anadromous Pacific

salmon that may have implications for the distribu-

tion of other aquatic species. Given the migratory life

history of anadromous salmonids, their fitness is

affected by habitats outside the catchments in which

they spawn and rear. This pattern differs from

resident fish species, which spend their entire lives

within a given catchment. We argue that the steel-

head and stream-type Chinook salmon described in

the aforementioned papers and in this paper are

reasonable proxies for scale-specific relationships

between habitat and population performance because

they rear for 1 year, or more, within their natal

streams before migrating out to sea (Gilbert 1912;

Everest and Chapman 1972; Howell et al. 1985;

Myers et al. 1998; Quinn 2005). The total time that a

given individual spends in freshwater, from the egg

to outmigrating smolt, can reach 2 years, or more.

Therefore, they are intimately tied to their riverine

habitats during the freshwater phase of their life

history, more so than other anadromous salmonids

that spend far less time in their freshwater habitats

(e.g., pink (O. gorbuscha) and chum (O. keta)

salmon). Further, the freshwater life history stages

of steelhead and stream-type Chinook salmon are

critical to subsequent stages, since they cannot

outmigrate to marine environments until they have

reached a minimum size and condition (Quinn 2005).

Therefore, the types and quality of habitats they

occupy during their lengthy freshwater stages are

essential to their survival.

The aim of this study was to address three

questions: (1) at which scale does each potential

GIS based landscape predictor variable have the

strongest relationship with salmon performance; (2)

at which scale is overall model fit maximized; and

(3) how does a multi-scale model compare with

single scale models? Multi-scale models contain GIS

based landscape predictor variables measured at

different scales (local, intermediate or catchment)
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within a given model. In contrast, single-scale

models contain GIS based landscape predictor vari-

ables measured at one scale only (local, intermediate

or catchment). By examining the question of scale in

these three different ways, we minimized any biases

that may have resulted from exploring the question

one variable at a time versus by using all possible

variables in a multiple regression context. Our

analyses are unique in that we have synthesized

patterns over a very large geographic region, based

on decades of salmon population data, which we

believe makes them broadly applicable to the field of

landscape ecology.

Methods

Study area

We analyzed three river subbasins in the Columbia

River basin, USA: the John Day, Wenatchee, and

Yakima (Fig. 1). The John Day subbasin is sparsely

populated and cattle grazing is its predominant land

use. The Yakima subbasin is dominated by

agriculture and has a higher population density than

the John Day subbasin. The Wenatchee subbasin,

which is the smallest of the three, is heavily forested

with relatively low levels of agricultural activity. The

drainage area size, ecoregion, Evolutionarily Signif-

icant Unit (ESU) name, and ESU designation of each

of the subbasins are summarized in Table 1. ‘‘An

ESU is defined as a population that (1) is substan-

tially reproductively isolated from conspecific popu-

lations and (2) represents an important component in

the evolutionary legacy of the species’’ (Johnson

et al. 1994). Further, a ‘‘population’’ can be defined

by a geographic boundary, such as a basin.

Spawner abundance

Our analyses examined different Endangered Species

Act (ESA)-listed (NMFS 2003), anadromous Pacific

salmon species: spring/summer Chinook salmon (O.

tshawytscha) and steelhead (O. mykiss, NMFS 1997).

Redd (spawning nests constructed by females) count

data were obtained from StreamNet (2002) initially,

and supplemental data were obtained from other

sources as necessary (including the NWFSC spawner

database, unpublished data). Population data were

based on annual redd count surveys (StreamNet

2002), conducted at specific river reaches (‘index

reaches’) for many decades by various state agencies.

All index reach segments were mapped to either

1:24 k or 1:100 k USGS stream networks. We

examined 6, 20, and 6 Chinook index reaches in the

Wenatchee (Ames et al. 1974; Schwartzberg and

Roger 1986; Heindl and Beaty 1989; Hays and Peven

1990; Peven and Mosey 1995), Yakima (Horner and

Bjornn 1979; Schwartzberg and Roger 1986; Fast

et al. 1989, 1991; WDFW 1993), and John Day

(Lindsay et al. 1986; Schwartzberg and Roger 1986;

Olsen et al. 1994; Gray 1995; Unterwagner 1999;

Unterwegner and Gray 1999) subbasins, respectively.

We analyzed 43 years of redd data in the Wenatchee

(1958–2000), 22 years in the Yakima (1980–2001),

and 42 years in the John Day (1959–2000). We also

examined 43 steelhead index reaches (44 years of

surveys from 1959 to 2002) in the John Day subbasin

only.

We used redd count data because it is the most

comprehensive and complete proxy for spring/sum-

mer Chinook populations in the three subbasins we

analyzed. There are surveys of juvenile abundance in

Fig. 1 Map of Columbia River basin and the three subbasins

where analyses were completed. White lines denote locations

of index reaches where salmon redd data were collected
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these basin, but the time series are not as long and

these surveys are not available for as many sites as

the redd count surveys. By analyzing such a long time

series of spawner data, consistently collected at the

same sites over the same temporal window, we are

able to reduce the influence of factors extrinsic to the

basin, such as estuarine and ocean and survival. In

addition, our analytical technique looks at correlation

between spawner abundance across space and not

across time, so interannual variability based on

extrinsic factors is minimized. Finally, since we

grouped our data by subbasin (and by ESU), all of the

fish in a given subbasin are presumed to be affected

equally by extrinsic factors (i.e., migration route,

numbers of dams passed, ocean productivity, etc.)

Spatial analyses

In order to explore the influence of spatial extent on

the apparent relationship between habitat and salmon

redd density, we overlaid existing geospatial ‘‘habi-

tat’’ datalayers with the aforementioned locale-

explicit salmon redd abundance data. For the sake

of simplicity, the term ‘‘habitat’’ will be used as a

proxy for GIS based landscape datalayers for the

remainder of the methods section and throughout the

results section. We characterized each habitat type

and ran our models at three different spatial scales:

local (e.g., stream reach as defined by the area within

a 500 m buffer of a given index reach, X ¼ 11:9 km2,

SD = 21.8, across all 4 data sets), intermediate (all

6th field hydrologic units contacting a given reach,

X ¼ 230:2 km2, SD = 302.4, across all 4 data sets)

and catchment (total area upslope, i.e., the catchment, of

the downstream end of a given reach, X ¼ 644:5 km2,

SD = 1,970.1, across all 4 data sets). We chose these

three scale categories for the following reasons: local

scale was designed to capture the habitat conditions

generally within the riparian zone of a given reach;

intermediate scale was chosen as a hydrologically

accurate representation of an area intermediate

between local and catchment; and, catchment was

chosen to represent the total area that could possibly

affect a given index reach. It is important to note that

we did not vary the grain of these geospatial

datalayers, only the size of our analysis window.

Our landscape geospatial data were derived from a

variety of sources (Table 2). We classified each

predictor into one of five categories: ‘‘land use’’

(agriculture, cattle grazing, clearcut, dams, mines,

road density, diversions, sheep grazing or urban);

‘‘land cover’’ (alpine forest, arid vegetation, conifer

forest, hardwood forest, pine forest, riparian, water,

wetlands or wilderness, e.g., areas that have not been

significantly altered by humans); ‘‘structure’’ (area of

extent, channel slope, slides, stream junctions or

terrain slope); ‘‘climate’’ (precipitation or mean air

temperature); or ‘‘geology’’ (alluvium, glacial, igne-

ous, metamorphic or sedimentary). All of the geo-

spatial data we used in this study were ‘‘static’’ in that

they were collected at one point in time, most often

the year 2000, which was the most recent year of the

spawner surveys. The fact that these data were not

sampled every year did not necessarily degrade the

quality of our analyses. For example, variables within

the structure and geology categories, varied little if at

Table 1 Basin name, drainage area (km2), ecoregion association, ESUs, and ESA status of various Pacific salmon species in the

three analyzed subbasins

Basin (drainage

area, km2)

Ecoregion (s) ESUs and ESA status

John Day (20,518) Blue mountains; Columbia Plateau MCRa Spring Chinook: not warranted; MCR steelhead:

threatened

Wenatchee (3,441) Columbia Plateau; North Cascades UCRb Spring Chinook: endangered; UCR Summer/Fall

Chinook: not warranted; UCR Steelhead: threatened;

Lake Wenatchee Sockeye: not warranted

Yakima (16,070) Cascades; Columbia Plateau; Eastern

Cascades Slopes and Foothills; North

Cascades

UCR Summer/Fall Chinook: not warranted; MCR Spring

Chinook: not warranted; MCR Steelhead: threatened

a Middle Columbia River
b Upper Columbia River
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Table 2 Geospatial datalayers used in habitat analysis and measured at each corresponding extent (local, intermediate or catchment)

Geospatial datalayer Map scale

grain

Description

CLIMATEa

(mean air temperature)

N/A

2 km

Mean annual temperature for 1989 (Thornton et al. 1997, acquired from

Interior Columbia Basin Ecosystem Management Project (ICBEMP

1999), which was considered a ‘‘normal’’ year

CLIMATEa

(precipitation)

N/A

500 m

Total annual precipitation for 1989, considered a ‘‘normal’’ year from

Precipitation Elevation Regressions on Independent Slopes Model

(PRISM) (Daly et al. 1994), acquired from the ICBEMP (1999)

GEOLOGYb

(Alluvium, Glacial, Igneous,

Metamorphic, or Sedimentary)

1:500 k

N/A

USGS classification of geologic map units according to major lithology

Alluvium (alluvium)

Glacial (glacial drift)

Igneous (calc-alkaline intrusive, felsic volcanic flow, calc-alkaline

volcanoclastic, mafic intrusive, mafic volcanic flow, calc-alkaline meta-

volcanic, ultramafic, tuff, felsic pyroclastic, or mafic meta-volcanic)

Metamorphic (granitic gneiss, mafic gneiss, meta-sedimentary phyllite

and schist, interlayered meta-sedimentary, argillite and slate, carbonate,

or shale and mudstone)

Sedimentary (sandstone, mixed eugeosynclinal, or siltstone)

LAND COVERb

(Alpine Forest, Arid Vegetation,

Conifer Forest, Hardwood

Forest, Pine Forest, Riparian,

Water, or Wetlands)

1:100 k

25 m

Land use and land cover from Northwest Habitat Institute (NHI 2000)

GIS data layer of recent (ca. 2000) wildlife-habitat types. Wildlife-

habitat types maps originally published in Johnson and O’Neil (2001)

Alpine Forest (alpine grasslands and shrublands, or subalpine parklands)

Arid Vegetation (eastside [interior] grasslands, shrub-steppe, or western

juniper and mountain mahogany woodlands)

Conifer Forest (montane mixed conifer forest, eastside [interior] mixed

conifer forest, or lodgepole pine forest and woodlands)

Hardwood Forest (westside hardwood forest);

Pine Forest (ponderosa pine and eastside white oak forest and

woodlands)

Riparian (eastside [interior] riparian wetlands);

Water (lakes, rivers, ponds, and reservoirs)

Wetlands (herbaceous wetlands, or montane coniferous wetlands)

LAND COVERb

(Wilderness)

1:24–1:500 k

N/A

Designated wilderness areas on Forest Service, Bureau of Land

Management and National Park lands. Acquired from and compiled by

ICBEMP (1999)

LAND USEb

(Agriculture, Clearcut, or Urban)

1:100 k

25 m

Land use and land cover from Northwest Habitat Institute (NHI 2000)

GIS data layer of recent (ca. 2000) wildlife-habitat types. Wildlife-

habitat types maps originally published in Johnson and O’Neil (2001)

Agriculture (agriculture, pasture, or mixed environs)

Clearcut (grass/shrub and/or regenerating forest);

Urban (urban and mixed environs)

LAND USEb

(Cattle Grazing)

1:24–1:126 k

N/A

Livestock grazing allotments. US Forest Service, and BLM delineations

of areas where livestock can graze (ICBEMP 1999)

LAND USEc

(Dams)

N/A Dams with greater than 50 acre feet storage capacity. Acquired from

ICBEMP (1999) and derived from the National Inventory of Dams, US

Army Corps of Engineers, and State Water Resource Department Dam

Safety Divisions

LAND USEc

(Diversions)

1:100 k

N/A

US Forest Service database of water irrigation diversions, screens,

ladders, and pumps, supplemented by BPA, and State Fish and Game

data. Only used diversions for our analyses (screened, unscreened, and

unknown). Acquired from and compiled by ICBEMP (1999)
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all during the temporal window of this study.

Therefore, measuring them repeatedly every year

would have been pointless. The climate variables

were representative of average temperature and

precipitation values, calculated over a 30-year win-

dow that coincided with the temporal window of the

spawner data. However, the land use and land cover

categories contained variables that could conceivably

had been different from their 2000 classifications,

which would likely have reduced the fit of our

models. While we had no way of knowing which sites

were significantly different from when the geospatial

data were collected, we assumed that all of the land

use categories had likely been in those states (for

most of the sites) for the full window of the spawner

survey data. All of the sites in our study were far

Table 2 continued

Geospatial datalayer Map scale

grain

Description

LAND USEc

(Mines)

1:24–1:100 k

N/A

Mining related hazard potential sites (ICBEMP 1999). Compiled by

ICBEMP (1999) from 7.50 & 150 USGS paper quads (site investigation

field maps), published and unpublished literature, mining company

records, and public land records

LAND USEd

(Road Density)

1:100 k

N/A

Polyline representation of road networks. Source material includes USGS

DLG, USGS road/street maps, field compilation, survey data, and

Census Bureau TIGER/Line files as provided by Wessex Corp.

Acquired from and compiled by ICBEMP (1999)

LAND USEb

(Sheep Grazing)

1:24–1:126 k

N/A

Livestock grazing allotments. US Forest Service and BLM delineations of

areas where livestock can graze (ICBEMP 1999)

STRUCTURE

(area of extent—local)

1:24 k

N/A

Total area (km2) within 500 m of any given index reach. Generated

around each index reach in ESRI ARC/INFO using BUFFER command

STRUCTURE

(area of extent—intermediate)

1:24 k

N/A

Total area (km2) represented by all 6th field hydrologic units (HU’s) that

touch a given index reach. Generated using ICBEMP (1999) sixth field

hydrologic units (HU’s)

STRUCTURE

(area of extent—catchment)

1:24 k

N/A

Total area (km2) upslope of the downstream end of any given index reach.

Generated from a USGS 30 m DEM

STRUCTURE

(channel slope)

1:24 k

30 m

Calculated from USGS 1:24 k, 30 m digital elevation models (DEM).

Defined as rise (upstream elevation minus downstream elevation of

index reach) over run (river km length of index reach) multiplied by 100

STRUCTUREb

(slides)

1:500 k

N/A

USGS classification of geologic map units according to major lithology:

landslide category

STRUCTUREc

(stream junctions)

1:24 k

N/A

Density of stream junctions calculated from USGS 1:24 k stream network

data layer. Used for steelhead only in the John Day subbasin

STRUCTUREb

(terrain slope)

1:24 k

30 m

Hillslope gradient generated from USGS 30 m Digital Elevation Model

(DEM), using ARC/INFO. Calculated the slope of every 30 m gridcell

in the DEM. Hillslope for any given index reach was calculated by

summing all of the 30 m DEM gridcells with a slope less than 6% (for

steelhead) or 1.5% (for Chinook) contained in any index reaches’

associated local, intermediate or catchment extent

All data layers were generated by other entities (such as federal, state and academic institutions), with the exception of hillslope,

channel slope and stream junctions, which we generated for this study. The ‘‘k’’ after the map scales represents 1,000 (e.g., a map

scale of 1:100 k = 1:100,000). ‘‘Grain’’ is the size of each individual pixel or gridcell for raster-based datalayers. Grain is separated

from map scale by a horizontal dotted line for clarity
a Expressed as an area-weighted mean value, where each gridcell was multiplied by its value, summed over all gridcells and then

divided by the total area of corresponding extent
b Expressed as a percentage, for each individual category, of the total area of each corresponding extent
c Expressed as a density (the number of points per km2) for each corresponding extent
d Expressed as a density (linear km of given feature per km2) for each corresponding extent
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away from urbanized areas, and urbanization would

have been the variable most likely to change over the

spawner data temporal window. We also assumed

that the number of sites that would have experienced

significant land cover change before the geospatial

data were collected would be low. In addition, our

analyses were designed to catch sites that may have

been driving the relationship in a given regression, so

this would reduce the risk.

Statistical analyses

We used mixed models that included a random

intercept and an autoregressive correlation structure.

This model structure was selected to manage time

series of data with some missing data and was used

successfully in analyses of similarly structured data

(Steel et al. 2004). The mixed models included fixed

effects of habitat on redd density and a random

intercept to model population fluctuations over years.

The autoregressive correlation structure was neces-

sary because redd counts at a particular site are

somewhat auto-correlated over years. The dependent

variable in all cases was redds/km which was log-

transformed (natural log) to meet normality assump-

tions. To identify the best extent for each potential

predictor, three sets (local, intermediate and catch-

ment) of single-predictor models were fitted for each

basin-species combination. All models were fit using

Proc Mixed in SAS (Littell et al. 1996).

Conclusions about significant difference between

scales were made at three levels: the individual

predictor, classes of predictors, and all predictors.

Whether an individual predictor had a significantly

stronger relationship with redd density at one scale

versus the others was estimated from differences in

Akaike Information Criterion (AIC) values, with

differences greater than 4 generally considered sig-

nificant (Burnham and Anderson 2002). Of greater

interest was the question of whether the five catego-

ries of predictors had a stronger relationship with

redd density at one scale versus another.

At what extent is each predictor best correlated

with salmon redd density?

Single-predictor models for each landscape variable

were fit to redd density in each basin/species dataset

and at each extent independently. To combine results

from all individual predictors or all individual

predictors within a class, we used a randomization

test. The null hypothesis of the randomization test

was that predictors within a class had an equal chance

of performing best (smallest AIC value) at each scale

for which they were available. The randomization test

considers each independent predictor variable to be a

replicate trial within a larger class experiment. Some

predictors were available at all three scales and some

were available at only two scales, so we designed a

customized randomization test based on a binomial

distribution (where the predictor variable was only

tested at two extents, thus the probability for each

extent was 0.5) or a multinomial distribution (where

the predictor variable was tested at all three possible

extents, and the probability for each was 0.333). Note

that variables included at only one scale could not be

included in this analysis. We simulated 1,000 data

sets from each basin/species dataset to estimate the

distribution of observing any particular number of

variables being best at a particular scale. We then

compared the observed number of variables that were

best at a particular scale to the expected number

under the null hypothesis, as estimated from the

Monte Carlo simulations, and estimated the proba-

bility of observing the pattern we saw. Note that the

randomization test did not require all individual

predictors to have a significantly stronger relationship

with redd density at one scale. If, for example, all 9

land-use predictors had the strongest relationship

with redd density at the catchment scale, it would

indicate that for this class, catchment scale predictors

had a significantly stronger relationship with redd

density, even though the association for each indi-

vidual predictor may or may not have been statisti-

cally significant. We drew this conclusion because

under our null model, the probability of all 9

predictors having had the smallest AIC at the

catchment scale was very small.

At what extent is overall model fit maximized?

To determine at which extent the overall model fit

was maximized, we identified and compared the set

of best multiple regression models at each extent

using a model selection procedure on previous

analyses of similar data sets (Feist et al. 2003, Steel

et al. 2004). Models were built and selected for each

extent and for each basin-species combination. The
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model selection procedure we used is a modified all-

subsets procedure in which we considered all three-

variable models, ruling out models based on AIC

values, high colinearity, low stability, or low predic-

tive power. We fit the null model (intercept only), all

single-predictor models, and all two-variable models.

To save computer time, we fit three variable models

by adding all potential predictors only to two-variable

models with an AIC less than that of the null model.

We then calculated the difference in AIC values

between each model of any size and the lowest AIC

among all models (DAIC) and retained all models

with a DAIC less than four. This relatively conser-

vative cut-off (Burnham and Anderson 2002) was

applied in order to reduce the list of candidate

models.

We further refined the set of best models using

three criteria to remove unstable models. The condi-

tion index (Belsley et al. 1980) was used to identify

models in which the predictor variables were corre-

lated with one another; models with a condition index

[10, indicating moderate collinearity, were rejected.

Cook’s D was calculated to identify unstable models

due to data points with high leverage; models with

data points for which D [ 1.00 were eliminated

(Cook 1977). Finally, we conducted a cross-valida-

tion analysis to eliminate models with low predictive

power (Steel et al. 2004). If, after applying these three

criteria, fewer than 10 models remained in the

candidate set, the DAIC criteria in step two was

adjusted to increase the pool of potential models.

To identify the final set of best models, we ranked

the remaining models by ascending AIC and calcu-

lated AIC weights (Burnham and Anderson 2002).

The final set of best models were those where the

AIC weight of the next model was less than 0.05 or

the AIC-weight of the next model was less than 0.10

and the sum of the AIC-weights for the current set of

models was greater than 0.50 (Burnham and Ander-

son 2002).

How does a mixed extent model compare with

single extent models?

Multi-extent mixed-models were generated to address

the third question, ‘‘How does a mixed extent model

compare with single extent models?’’ We identified

the best extent for each potential predictor in each

basin-species combination and entered the variable

into the pool of potential predictors for that particular

basin-species combination only at that extent. We

then used the same model selection approach, as

described above, to identify the set of best models

using the new mixed-extent pool of potential predic-

tors. Note that approximately the same number of

potential predictor variables was available for the

mixed extent analysis as in each of the single extent

analyses.

Results

Predictor variables had the strongest relationships

with redd density when they were summarized over

the catchment scale. Meanwhile strong models could

be developed using only habitat variables summa-

rized at a local scale. Model performance did not

improve when we used suites of potential predictors

summarized over multiple scales.

At what extent does each predictor have the

strongest relationship with salmon redd density?

Redd densities were both positively and negatively

correlated with a wide variety of habitat variables at all

three spatial extents (Table 3). While there were

substantial differences in terms of which habitat

variable produced the best relationship (lowest AIC)

to the different extents, the strongest relationships

overall occurred when the habitat variables were

summarized over the catchment extent (Table 3). For

variables describing geology or structure, significantly

fewer than expected variables had the strongest

relationship with redd density at the intermediate

extent (P = 0.051 and 0.025, respectively). For land

use variables, significantly fewer than expected vari-

ables had the strongest relationship with redd density

at the local extent (P = 0.021), and there were fewer,

though not significantly, than expected land cover

variables in which the best relationship with redd

density occurred at the local extent (P = 0.068).

When considering all five categories of habitat vari-

ables together, there were significantly more variables

than expected with the strongest relationship between

habitat condition and redd density when habitat

condition was summarized over the catchment extent

(P = 0.049). When habitat conditions were summa-

rized at the local extent, however, the number of
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variables that contributed to a strong relationship

between habitat condition and salmon redd density

were fewer, but were not significantly (P = 0.083)

less than the expected variables.

At what extent is overall model fit maximized?

A subset of the many potential predictor variables

was used in the final set of 27 best models for

Chinook and 11 best models for steelhead (Tables 4

and 5). All variables except sheep grazing, mean air

temperature, precipitation, stream junctions, slides,

terrain slope, conifer forest and hardwood forest,

were included in at least one of the Chinook models.

Across subbasins, the suite of best predictor variables

changed considerably. Cattle grazing, for example,

was in every best model for the John Day basin, but

was not in the set of best models for the other basins.

Agriculture was in nearly half of the best models for

the Yakima, but did not appear in the other basins.

Geology was important in the best models for all

basins; it included alluvium, glacial, igneous, sedi-

mentary, and/or metamorphic depending on the basin

and the extent. About 77% (10 of 13) of the Chinook

models involved at least one land use variable and

those models that did not contain any land use

variables were never observed at the catchment

extent (Table 5). All of the steelhead models had at

least one land use variable (Table 5). Only agricul-

ture, area of extent, channel slope, clearcut, diver-

sions, sedimentary geology, sheep grazing, and

terrain slope made it into the 11 steelhead models

(Table 5).

Table 3 Summary of model results assessing at what extent each predictor has the strongest relationship with salmon performance

(Question 1, see text)
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Climate 
Mean Air Temp 0 0 1 1 1 1 0 0 

Precipitation 0 1 0 0 6 5 6 0 

G
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 Alluvium 0 0 1 3 4 0 0 
Glacial 1 

Igneous 1 1 0 1 0 0 
Metamorphic 0 1 0 0 6 3 0 0 
Sedimentary 2 2 3 1 7 7 
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nd

 C
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Alpine Forest 0 2 2 0 0 
Arid Vegetation 0 0 0 3 1 0 0 
Conifer Forest 2 1 0 0 2 0 1 2 

Hardwood Forest 1 0 
Pine Forest 0 0 0 0 2 2 6 5 

Riparian 2 3 
Water 2 1 7 6 4 3 

Wetlands 0 0 0 0 4 
Wilderness 2 1 0 0 0 
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Agriculture 0 1 2 1 1 2 
Cattle Grazing 2 1 0 4 1 

Clearcut 1 1 0 3 3 5 2 
Dams 4 1 1 1 
Mines 1 2 3 1 1 4 1 2 

Road Density 0 0 1 1 6 6 3 1 
Screens 1 1 1 1 

Sheep Grazing 0 1 1 10 1 
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 Area of Extent 0 0 1 4 0 1 2 4 

Channel Slope 
Slides 1 0 0 

Stream Junctions 1 0 
Terrain Slope 0 0 4 3 1 1 2 1 

Gray boxes denote variables that were not present at that extent, and so could not be tested. White and black boxes denote variables

that were tested at a given extent. Black boxes denote the extent with the minimum AIC for a given variable. Numbers inside the

white boxes indicate the difference between AIC at that extent and the minimum AIC. Values greater than 4 can be considered

significant. One asterisk in a black rectangle indicates significantly outperforming one other extent and two asterisks indicates

significantly outperforming both other extents. A comparison of the best scale for each individual predictor should be considered one

trial in the overall experiment to identify the best scale. Determination of a best scale and of significant differences between extents

was estimated using randomization tests based on these trials
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Model fit appeared better for Chinook salmon than

steelhead (Table 5; Fig. 2). However, differences in

available data for the two species prevent direct

cross-species comparisons. For the same reasons,

inter-subbasin comparisons of model fit are not

appropriate. Instead, we compared model fit across

the three extents within subbasin and species. For

Chinook salmon, local extent models generally had

lower AIC values than intermediate and catchment

extent models (Fig. 2). Intermediate extent models

had the highest AIC values. For steelhead, the

catchment extent models had the lowest AIC values,

while the intermediate and local extent models

resulted in slightly higher values.

How does a mixed extent model compare with

single extent models?

For Chinook salmon, the mixed extent models

produced lower AIC values than the intermediate

and catchment extent models (Table 6; Fig. 2).

However, the AIC values for the mixed extent

models were similar to those of the local extent

models. For steelhead, the AIC values of the mixed

extent models were similar to that of the local and

intermediate extent models, but lower than that of the

catchment extent models (Fig. 2). Half (1 of 2) of the

Chinook and all (4) of the steelhead models involved

at least one land use variable (Table 6).

Discussion

The extent over which landscape conditions are

summarized influences the degree to which landscape

condition is correlated to biological response, specif-

ically, salmon redd density. There is no single ‘best’

extent over which to summarize landscape condition.

Instead, the choice of extent is a function of the

landscape feature in question and should reflect our

understanding of the underlying mechanism by which

landscape condition influences aquatic habitats. The

Table 4 Summary of model

results to assess at what extent is

the overall model fit maximized

(Question 2)

Gray boxes denote variables

that were not present at that

extent, and so could not be

tested. Variables with white

boxes were not included in any

of the final models. Variables

with black boxes were included

in the final models; the number

of models in which a given

variable was used is indicated in

each of these boxes
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strength of relationships at the catchment extent

suggests that mechanisms controlling aquatic condi-

tions are operating over these large spatial extents

and data collection efforts that ignore the larger

context of local conditions are likely to be incom-

plete. However, local conditions should not be

ignored, rather, they should be viewed within the

context of the landscape they are contained within.

At what extent is each predictor best correlated

with salmon redd density?

Wang et al. (2003) concluded that the importance of

‘‘reach-scale’’ variables was most evident in ‘‘unde-

graded areas’’ and that ‘‘watershed-scale’’ variables

would increase in importance in landscapes that have

been altered by humans. Our results are in agreement

with the latter scenario. We found that there were

significantly fewer than expected ‘‘best’’ extent land

use variables at the local extent that made substantive

contributions to the predictive models. We found

similar patterns for our land cover variables, which is

probably due to the fact that so many land cover

variables are strongly affected by land use practices

(e.g., forested cover types and commercial timber

harvest). It is widely believed that the geology and

climate patterns of a given drainage basin drive the

conditions found in streams (Knighton 1984; De Boer

1992; Richards et al. 1996). Although our results

appear to support this paradigm qualitatively, the

relationship was not always statistically significant.

One reason for a lack of significant relationships may

be the low number of index sites and insufficient

statistical power. Another explanation may be that the

Table 5 Independent variables, associated coefficients and AIC values for the set of best multivariate models used to assess at what

extent the overall model fit is maximized (Question 2)

Subbasin species extent Equation AIC r2

Yakima

Chinook

Local

-105.77(Channel Slope) -0.15(Clearcut) -0.43(Riparian) 666.4 0.926

-0.35(Riparian) -0.18(Clearcut) ? 0.73(Road Density) 667.3 0.919

-0.32(Riparian) -92.90(Channel Slope) -0.06(Sedimentary) 667.5 0.918

Yakima

Chinook

Intermediate

-90.76(Channel Slope) -5.45(Terrain Slope) ? 0.53(Wetlands) 674.4 0.835

-76.00(Channel Slope) ? 64.57(Dams) -6.18(Terrain Slope) 674.6 0.833

-0.05(Agriculture) ? 0.03(Alluvium) -76.26(Channel Slope) 674.8 0.829

-0.0009(Area of Extent) -91.95(Channel Slope) -0.86(Riparian) 675.2 0.822

-0.036(Agriculture) -69.84(Channel Slope) ? 39.31(Dams) 675.5 0.817

0.080(Metamorphic) ? 0.022(Wilderness) ? 62.51(Dams) 675.9 0.810

Yakima

Chinook

Catchment

-0.14(Agriculture) -136.18(Channel Slope) -81.06(Diversions) 672.5 0.864

-0.14(Agriculture) -139.16(Channel Slope) ? 0.05(Alpine Forest) 673.4 0.851

-124.36(Channel Slope) -4.05(Riparian) -0.81(Road Density) 673.7 0.847

-141.71(Channel Slope) -118.50(Diversions) -1.49(Urban) 673.9 0.844

John Day

Steelhead

Local

-0.06(Area of Extent) -7.32(Channel Slope) -0.0074(Sheep) 2,077.0 0.519

-0.04(Area of Extent) -0.0049(Sedimentary) -0.0081(Sheep) 2,077.5 0.509

-0.05(Area of Extent) -0.01(Agriculture) -0.0081(Sheep) 2,077.7 0.503

-0.05(Area of Extent) -0.0083(Sheep) -0.15(Diversions) 2,077.8 0.501

John Day

Steelhead

Intermediate

-0.22(Clearcut) -0.0079(Sedimentary) -0.0088(Sheep) 2,077.3 0.513

-0.3058(Clearcut) -1.6707(Diversions) -0.0074(Sheep) 2,077.9 0.499

0.0013(Area of Extent) -0.26(Clearcut) -0.0056(Sheep) 2,078.5 0.486

-0.0086(Sheep) -1.34(Terrain Slope) -1.58(Diversions) 2,079.0 0.473

John Day

Steelhead

Catchment

-0.22(Clearcut) -0.0079(Sedimentary) -0.0088(Sheep) 2,074.1 0.579

-0.38(Agriculture) -0.0083(Sheep) -0.23(Clearcut) 2,074.7 0.568

-0.27(Clearcut) -7.70(Channel Slope) -0.0081(Sheep) 2,075.0 0.562

The response variable in all cases is the natural log of redds/km
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extent over which a given predictor influences stream

characteristics, and hence abundance of spawning

fish, is highly variable, and our three extent areas did

not adequately capture the scaling dynamics (Frissell

et al. 1986). The relatively poorer model fit for

Chinook at the intermediate extents for geology and

structure variables suggests that the mechanisms

through which these variables influence Pacific

salmon redd density operate primarily at the local

and catchment extents. There are a number of fine-

grained habitat attributes, such as physical structure

(large woody debris, boulders, etc.) and riparian

composition that are important for anadromous

salmonids (Quinn 2005), but were not resolved by

our coarse-grained geospatial data. This deficiency

may also explain the apparent decrease in model

performance at smaller spatial extents.

Scale dependent relationships with factors other than

habitat (e.g., invertebrates) may have also limited our

ability to detect strong scale dependent relationships.

Based on their work on macroinvertebrates, Richards

et al. (1996) concluded that anthropogenic factors

operate at a local ‘‘scale’’, which should, in turn,

influence habitat conditions in a given stream reach.

Therefore, one might argue that land use practices

should have the strongest relationship with Pacific

salmon redd density when summarized over a small

area. However, Paavola et al. (2006) and Infante et al.

(2009) concluded that macroinvertebrates might

respond to processes operating at smaller scales,

compared with fishes that may respond more to large-

scale factors. They also demonstrated that concordance

between macroinvertebrates and fish species increased

as a function of the spatial extent of the analysis. Given

that we did not measure macroinvertebrate diversity in

this study, we could not account for it in our models and

it may have decreased the strength of the relationship

between the various geospatial landscape data and

spawner abundance, measured at various extents.

Overall, our analyses suggest that quantifying

habitat in geospatial datalayers at a catchment extent

provides potential predictor variables that are more

closely correlated with and may therefore have a

greater influence on Pacific salmon redd density. This

conclusion is consistent with other research (Frissell

et al. 1986; Imhof et al. 1996; Richards et al. 1996;

and Davies et al. 2000). However, it is important to

note that all of the relationships we observed should

not be presumed causal. All we can conclude is that

the characteristics of the predictor variables either

Fig. 2 Box and whisker plots comparing AIC for various

fixed- and mixed-extent models as a function of extent, by

subbasin and species (steelhead and Chinook)

Table 6 Independent variables, associated coefficients and AIC values for mixed-extent models to determine how a mixed extent

model compares to single extent models (Question 3)

Subbasin species Equation AIC r2

Yakima Chinook -0.078(Pine Forest) ? 0.95(Road Density) -1.38(Urban) 665.4 0.933

-92.90(Channel Slope) -0.32(Riparian) -0.056(Sedimentary) 667.5 0.918

John Day Steelhead -0.34(Agriculture) -0.0083(Sheep) -0.0079(Sedimentary) 2,076.3 0.534

0.0012(Area of Extent) -0.0073(Sheep) -0.0078(Sedimentary) 2,076.8 0.524

-0.064(Mean Air Temp) -0.011(Sheep) -0.0095(Sedimentary) 2,077.2 0.516

-0.38(Agriculture) -0.25(Clearcut) -0.0065(Sheep) 2,077.4 0.511

The response variable in both cases is the natural log of redds/km. AIC values should only be compared between models predicting

the same response dataset
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directly, or through indirect and/or associations,

cause them to be coincident with redd density.

Finally, it is important to note that our results may

have told a different story had we analyzed juvenile

salmon data as a response variable.

At what extent is overall model fit maximized?

Some of the classes of variables (e.g., geology, terrain,

land cover, etc.) identified in the best models were

similar to those identified by others who have studied

the relationship between Pacific salmon population

dynamics and landscape condition in other Pacific

Northwest systems (Pess et al. 2002; Feist et al. 2003;

Steel et al. 2004). Looking across all six basins and the

three species studied in these previous studies, we did

not find that a consistent set of landscape predictors

always correlated with salmon abundance. This

should not be surprising, given the variety of ecosys-

tems analyzed and the diversity of intra- and inter-

specific life history patterns. Rather, our observations

indicate that a unique combination of land use, land

form, climate and geology variables drive salmon

distribution in each basin. While climate factors are

generally presumed to have profound effects on local

stream conditions (Knighton 1984; De Boer 1992; and

Richards et al. 1996), we found that neither precip-

itation nor mean air temperature were included in any

of the final models. While the ranges of temperature

and precipitation for both subbasins were fairly wide

(up to 11C and 1,700 mm, respectively), it’s possible

that the coarse grain of these data (2,000 and 500 m,

respectively) may have hindered our ability to detect

an effect.

The relationship of predictor variables with redd

density was previously found to be greater for habitat

summarized over the entire drainage basin associated

with a given spawner index stream, than with an area

restricted to within 500 m of a given spawner index

stream (Feist et al. 2003). In contrast, here we found

that multivariate models that were based on habitat

summarized within 500 m of a spawner index stream

(local extent) had lower AIC values than models

summarized at intermediate and catchment extents.

This may appear to be counterintuitive, given that the

‘‘best extent’’ for individual predictor variables

(addressed in question 1) was more often catchment

extent than local or intermediate extents. The pattern

can be explained with the conclusion that single

variables, summarized at the local extent, were not

strongly correlated, but combinations of these ‘‘local’’

variables have a much greater explanatory power.

This implies that multiple factors influence salmon

spawner abundance, and these factors likely interact.

We can consider this finding conservative given that

there were fewer variables available at the local extent

and, all other things being equal, a greater number of

candidate predictors leads to better models, particu-

larly with small sample sizes (Harrell 2001).

How does a mixed extent model compare with

single extent models?

Few published papers have compared the perfor-

mance of mixed extent models with models whose

variables were summarized over a single extent. Such

models require that the authors calculate the variables

at multiple extents and then determine the best extent

for each variable. However, there have been numer-

ous correlational studies that have characterized land

use variables at a variety of extents, and then

determined which extent was best correlated with

instream response variables (see papers cited in Allan

2004 and Van Sickle 2003). It seems intuitive that

models with mixed spatial extents should perform

better than the simpler single extent models. Given

that there is not one extent that yields the best fit for

all of the variables, it follows that a model, which is

created with variables measured at the optimum scale

for that variable, would have better model fit

compared with a model using variables summarized

at one scale. Further, given the hierarchical arrange-

ment of riverscapes, one would expect that measuring

variables at extents that potentially match the scale of

their influence might yield models with better fit.

Olden et al. (2006), found that models of macroin-

vertebrate communities that incorporated habitat at

multiple spatial scales performed better than those at

a single scale. That our mixed extent models

generally had model fits that were similar to those

of all of the models generated to address question two

was surprising, as we had hypothesized that mixed

extent models would improve model fit. Our result

may be due to strong positive within-extent interac-

tions; those interactions were lost when we used

mixed extent models. Another possibility is that the

best extent for a particular variable, when entered

alone in a model, may be different than the best
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extent for that same variable when entered in a model

already generated with one or more parameters.

Finally, the best extent for a given variable might

shift as a function of other variables in the model.

Mixed extent models did not perform any better than

single extent models, suggesting that a simpler

approach to analyzing the geospatial data may be

more efficient.

Conclusion

From these data, we conclude that our perception of

which habitat attributes are significant is a function of

observational extent, and that restoration and conser-

vation efforts should consider conditions at multiple

extents. The spatial window size over which we

summarize or examine habitat variables can be

important. If it were not, we would have found

similar relationships at all three extents. Our analyses

indicate that coarse-grained land use and land cover

predictor variables do not correlate as well with

Pacific salmon redd density when summarized within

500 m of the stream channel. Much stream and river

research has been conducted at the reach scale and

often restoration or land-use decisions focus only on

the riparian buffer surrounding a stream. That the

pattern of land-use across the entire catchment might

be as strongly or even more strongly associated with

stream condition or salmon distribution is useful. Our

results open the way for tools from the field of

landscape ecology to be applied to river and salmon

conservation.
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